
input.F90 — a Fortran90 module for parsing text input
Copyright (C) 2005 Anthony Stone

This package includes the following files:

input.f90 The input.F90 module. It is documented by Fortran comments in the file
itself, as well as in this document.

test_input.f90 A short program which both illustrates the way in which the module can
be used, and also reads a test data file and prints the numbers in it. Note
that this program echoes the data lines to the output, which is not the
default behaviour.

test_data A short test file to be read by test_input.f90.
run_test A shell script to compile and run the test program.
test.output A copy of the output from the test program. (The test program sends its

output to test.out, so it won’t over-write this copy.)
doc.pdf This document.
README A plain text version of this paragraph.

The main routine in the input module is read_line(eof), which reads a line of data from the
input and parses it into ‘words’ or items. The logical argument eof is set true if end of file is
encountered, otherwise false. Items are normally terminated by space or comma, but strings
containing these characters may be enclosed in single or double quotes. Any text enclosed in
parentheses (round brackets, like this) is ignored unless enclosed in single or double quotes, so
that comments may be included in the data file. Several data lines may be concatenated into a
single logical line by ending each line but the last with a concatenation sequence — ‘+++’ by
default but changeable if required.

Lines beginning with the hash character are treated specially:

followed by space Ignore the whole line.
#concat string Use the string as the concatenation flag.
#include file Read data from the specified file, returning to this file afterwards.
#revert (In an included file) Stop reading this file and return to the data

file that included it.

Included files may be nested.

The parsed items are not returned to the calling routine, but are held in module variables and
may be read by the following routines. It is possible to read any of the items in the line, but the
default is to read them in the order in which they appear. The module variable item points to
the last variable read, while nitems is the number of items on the line.

call readf(a[,factor])
Read the next item in the line as a single or double-precision variable a. If the optional argument

1

factor is present, divide the resulting number by it. (I use this for converting values between
external and internal units.) If factor is present, it must have the same kind as the variable a.

call readi(i)
Read the next item in the line as an integer i.

call reada(string)
call readu(string)
call readl(string)
Read the next item into the character variable string. The readu routine converts letters in
string to upper-case, while readl converts them to lower-case. The reada routine does not
carry out any conversion.

If an attempt is made to read beyond the last item on the line, null values are returned and item
is not incremented further. However there are routines getf, geti and geta which will read an
item of the appropriate type, calling read_line to read a new logical line if all the items in the
current line have already been read.

call reread(k)
Prepare to read a specified item on the current line. That is, move the item pointer so that the
next item read is the one specified:
k > 0: Read or reread item k.
k < 0: Go back |k| items (but it is not possible to move back past the first item on the current
logical line).
k = 0: Same as k = −1, i.e. reread last item.
The main function of this routine is with argument −1, to reread the last item. This is useful
for dealing with optional keywords; an item is read using readu, and if it is a recognized
keyword the appropriate action is taken. If it is not recognized as a keyword, it is assumed to
be a number or string associated with an omitted keyword, and the program reads it again as
such, using reada in the case of a string to maintain the original case of letters. An example of
this usage is given in the test program.

call input_options
This routine has a number of arguments, all optional:

clear_if_null If true (default), null values (i.e. blank space between commas or
after the last item on the line) are read as zero or the null string. If
false, null values are ignored – the existing value is unchanged.

skip_blank_lines If true, blank lines are skipped by the parser. If false (default) they
are returned as ordinary data lines that happen to contain no items.

echo_lines If true, each data line is echoed to standard output as it is read. If
false (default) this does not happen.

concat_string A concatenation string can be provided to replace the standard one
using this argument. Default is “+++”.

2

error_flag An integer value which controls the treatment of errors found in nu-
merical values. If zero (hard errors, default), the program prints an
error message and stops. If set to 1 (soft errors) the error message
is printed, but the variable being read is set to zero and the program
continues. If set to 2, no message is printed, the module variable
nerror is set to −1, and the program continues. Subsequent errors
are hard unless nerror is reset to 2.

default If true, reset all options to the default.

call stream(n)
Take subsequent input from Fortran unit n.

The following routines are used internally but are available for use by other routines:

call upcase(string)
call locase(string)
Convert letters in string to upper or lower case.

call parse(string)
Parse the string provided in the same way as the read_line routine (which uses this routine
itself) and leave the details in the buffer as for a line read from the input. Input directives are
not interpreted.

call die(string[,echo])
For error messages. Print string, print the current input line if the optional logical argument
echo is present and true, and stop.

call assert(test,string[,echo])
Evaluate the logical expression test, and stop as for the die routine if it is false.

find_io(n)
This is an integer function, which cycles through I/O units 1–99, starting at unit n, until one is
found that exists and is not in use, and returns that unit number.

3

