
Root Rational Fraction program, version 4.1
A calculator program and subroutine library for working with numbers that are square roots of

rational fractions

©2003–2018 Anthony J. Stone

This program was originally written by Anthony Stone and Charles Wood, and is intended pri-
marily for the calculation of Wigner 3j, 6j and 9j symbols, which occur in the theory of angular
momentum, and for performing elementary arithmetic with them. Further details of the origi-
nal Fortran77 implementation may be found in Stone and Wood (1980). The current Fortran95
source code is available at www-stone.ch.cam.ac.uk/pub/rrf-4.1.tar.gz as a compressed tarfile
(about 25 kbytes). As well as providing a stand-alone calculator program, it provides a library
of Fortran 90 subroutines that manipulate numbers which can be represented as square roots of
rational fractions — root-rational-fraction or RRF objects.

Version 4 of the program comprises Fortran modules rrf_module and wigner, together with
a program RRFcalc that reads input a line at a time and treats it as commands for a calculator
working in Reverse Polish Notation. It is convenient for interactive use, but it can be used
non-interactively by supplying a file of commands as standard input. See §1 for details. The
modules can be used to build other programs that need to manipulate Wigner coefficients or
other RRF objects.

1 RRF calculator program
The program rrfcalc is designed to simplify quantum mechanics calculations involving an-
gular momenta, which usually involve Clebsch–Gordan coefficients or Wigner 3j, 6j or 9j co-
efficients. The 3j coefficients for low angular momentum values are tabulated in various places
but often in inconvenient forms, while 6j tabulations are limited and harder to fins, and the huge
number of 9j symbols makes tabulation impractical. Calculation of 6j and 9j coefficients from
the standard formulae in terms of 3j coefficients is tedious and error-prone. The rrfcalc pro-
gram provides the values directly and allows straightforward computation of quite complicated
formulae to give an exact numerical result.

rrfcalc operates in Reverse Polish Notation, which may be unfamiliar but is quite easy to use.
It deals with a stack of numbers, initially empty. Each operation either puts a new number on
the top of the stack, or operates in some way on the top number, for example by modifying
it or displaying it, or combines the top two numbers in some way and replaces them by the
result. It is normally used interactively, but can be used non-interactively by supplying a file of
commands as standard input.

After each line of input has been processed, the top item on the stack is displayed, unless the
last command already displayed it. The commands available are:

1

integer read the integer (which must be non-negative) and put it on the stack. To
get a negative number on the stack, you need to read in a positive number
and use CHS to change the sign.

PP rrf read the rest of the line as a root-rational-fraction in power-of-prime form
(See Appendix A), and put it on the stack.

+ Add: replace the top two elements on the stack by their sum.
- Subtract (top-of-stack from the one below).
* Multiply
/ Divide (top-of-stack into the one below)
POWER n raise to power n (n = integer or integer/2).
SQRT = POWER 1/2. Note that it is an error to take the square root of a number

which already contains half-odd-integer powers.
CHS change the sign of top-of-stack
SWOP, SWAP exchange the top two items on the stack.
STO n Store top-of-stack in memory n (1 < n < 25). The item is not removed

from the stack.
RCL n Recall from memory n to top-of-stack.
V Verify (display) top-of-stack.
LIST List the entire stack using the current default verification mode. Top-of-

stack is shown first.
VP Verify top-of-stack in power-of-prime notation
VI Verify top-of-stack as (a/b)*sqrt(c/d), where a, b, c and d are integers

(standard default).
VF Verify top-of-stack as a floating-point number.
VMP Change default verification mode to power-of-prime.
VMI Change default verification mode to (a/b)*sqrt(c/d). This is the usual

default.
VMF Change default verification mode to floating-point.
0J, 3J, 6J, 9J Calculate a Wigner 3 j, 6 j or 9 j symbol and put it on the stack. See below.
CG Calculate a Clebsch–Gordan coefficient and put it on the stack. See be-

low.
POP Delete the top member from the stack.
PUSH Push the stack down, copying the top member. PUSHing an empty stack

inserts zero.
CLR, CLEAR Clear the stack.
PROMPT string Set prompt string. The string is output when the program is ready for the

next line of commands. The default string is ‘:’. A null string may be set.
ECHO+ Reflect each input line before obeying any commands.
ECHO- Do not reflect input lines (default).
(Ignore rest of line.
? Give a summary of the available commands.
QUIT, Q Exit the program.

The full input for the 0J, 3J, 6J, 9J and CG commands takes the form:
0J j1 j2 j3

2

list

factor

rrf:

node:

Figure 1: Structure of a root-rational-fraction (RRF) number.

3J j1 j2 j3 m1 m2 m3
6J j1 j2 j3 l1 l2 l3
9J a b c d e f g h i
CG j1 j2 J m1 m2 M
where each argument is integer or integer/2 (integers only for 0J) and all arguments must appear
on the same line separated by one or more spaces. 0J calculates a 3 j symbol for which all m
values are zero. CG calculates the Clebsch–Gordan coefficient 〈 j1 j2 m1 m2|J M〉.

2 RRF routine library
The RRF calculator is suitable for simple one-off calculations, but some calculations need a
special program. The RRF routine library is used by the calculator in the background, and is
available for general use.

Each RRF (root-rational-fraction) is referred to via a Fortran variable of type(rrf). Such
a variable contains a pointer to a type(node) variable list, which points to the head of a
circular list in which the RRF is held in power-of-prime form. (See Figure 1.) Each node in
the list describes a factor (pn)

xn , where pn is a prime number and xn is an integer or half-
odd-integer. The list only includes primes pn for which the xn is non-zero. The node actually
stores the integer 2xn. The head node contains the ‘prime’ −1, and its integer and half-odd-
integer powers provide sign factors±1 and±i. The RRF also contains an integer factor which
may hold an intermediate multiplying factor that has not yet been factorized into a product of
primes. Such intermediate numbers can get extremely large in complicated manipulations, so
it is recommended to use the gfortran compiler, which provides 16-byte integers (up to 38
decimal digits). Other compilers, limited to 8-byte integers (18 decimal digits) will however be
adequate for normal use. The program checks for integer overflow and should stop rather than
give erroneous results.

All arithmetic and i/o manipulations are carried out by special routines provided in the rrf mod-
ule, and the list elements are not available directly to a program that uses type(rrf) variables.
Mutiplication of RRFs is straightforward — essentially just a matter of merging the power-
of-prime lists, adding the xn values for each prime pn. Addition is much more complicated,
because each RRF has to be expressed as a power-of-prime list describing the highest common
factor of the RRFs in the sum, each multiplied by an integer factor. These integer factors are

3

then added together, factorized into a power-of-prime list, and multiplied by the common fac-
tor. When several RRFs are added sequentially, the intermediate factors can get very large, and
include very large prime factors, but the final result in angular-momentum calculations contains
only relatively small prime factors, usually no larger than the sum of all the angular momenta
involved plus 1.

Further details of the program, in its original Fortran 77 form, may be found in Stone and Wood
(1980). The current version of the program comprises a Fortran module rrf_module.F90 con-
taining all the basic routines, a module wigner.F90 containing routines to calculate 3j, 6j and
9j coefficients, the calculator program rrfcalc.F90, and programs test3j.f90, test6j.f90
and test9j.f90 which carry out various tests of the Wigner routines. Also included are the
programs realcg.F90, which generates tables of coupling coefficients, analogous to Clebsch–
Gordan coefficients, for coupling spherical tensors expressed in real form (see Stone (2013)),
and C6coeffs.F90, which generates Fortran code for calculating dispersion coefficients (up to
C12, not just C6) from local distributed polarizabilities at imaginary frequency.

3 RRF library routines
3.1 Initialization routine

subroutine init_rrf([quiet[,primes]])

This must be called before any of the other routines. It sets up a table of primes and initializes
the table of factorials. quiet is an optional logical argument, which if true suppresses the initial
program banner. primes is an optional integer argument, which if present specifies the number
of primes to be generated in the table of primes. Default 20000.

3.2 Housekeeping routines

subroutine clear(k)

Deallocate RRF k. This should always be used to release the space occupied by temporary
variables before exit from subroutines – otherwise the list space will rapidly become full. There
is no automatic garbage collection.

subroutine copy(k1,k2)

Set RRF k2 equal to k1. The Fortran assignment statement k2 = k1 can also be used; it is
overloaded to do the right thing.

subroutine rename(k1,k2)

Set RRF k2 equal to k1 and clear k1.

subroutine exch(k1,k2)

Exchange the RRFs k1 and k2. Use exch or rename rather than copy where possible.

subroutine unit(k)

Set k to the RRF representation of unity (not the same as k = 1).

4

function iszero(k)

Returns the value .true. if RRF k represents zero and .false. otherwise.

function nonzero(k)

Returns the value .true. if k represents a nonzero value and .false. otherwise.

subroutine chsign(k)

Change the sign of k (multiply by −1).

subroutine conjugate(k)

Replace k by its complex conjugate.

3.3 Arithmetic routines

subroutine mult(k1,k2,m)

Multiply k1 by k2**m. k1 and k2 must be different variables. Division is achieved by having
m < 0.

subroutine multi(k1,i,m)

Multiply RRF k1 by i**m, i, m integers.

subroutine setf(n,k)

Set RRF k to the value of n!. The factorial table, which initially contains only 0! and 1!, is
extended if necessary.

subroutine multf(k,n,m)

Multiply RRF k by (n!)m. The factorial table is extended if necessary.

subroutine power(k1,m)

Replace k1 by k1**m.

subroutine add(k1,k2)

Add k2 to k1, leaving k2 unchanged. k1 and k2 must be different RRF variables. An additional
restriction, which is in practice not a limitation at all, is that the result of the addition must itself
be expressible as an RRF. Thus, for example, an attempt to add

√
3 to
√

5 will provoke an error
message. See Note 2.

subroutine subtr(k1,k2)

Subtract k2 from k1.

logical function equal(k1,k2)

The logical function equal has the value .true. if k1 and k2 represent the same number,
.false. otherwise. The form k1 == k2 can also be used when k1 and k2 are both RRFs, as
can k1 /= k2 to test for inequality.

subroutine root(k)

5

Replace k by its square root. This will provoke an error if there are any primes with half-odd-
integer exponents in k already.

3.4 Conversion routines

These routines convert RRFs to ordinary Fortran variables, or to values in an A1 character
buffer, and vice versa, or print out a character representation of an RRF.

subroutine int_to_rrf(i,k)

Express integer I as RRF K.

subroutine pp_to_rrf(m,n, np, k)

Read an RRF from the first N characters of the A1 character buffer M. The detailed syntax of
the RRF representation is given in Appendix A..

subroutine rrf_to_4i(k, i1,i2,i3,i4)

Express RRF k as (i1/i2)sqrt(i3/i4). i1 and i3 may be negative. i2 and i4 are always pos-
itive, unless integer overflow occurs, in which case zero is returned in i2, and i1, i3 and i4
contain rubbish.

subroutine char4i(k, m,m1,m2)

Convert the rrf K to 4-integer form as characters in the buffer M of length M2, starting at
position m1. m1 is updated to point at the next available position in the buffer. If integer overflow
occurs, 12 asterisks are returned.

subroutine rrf_to_real(k,a,n)

Express RRF k as a*i**n, where a is double precision and the integer n has the value 0 or 1
according as k is real or imaginary.

subroutine rrf_to_char(k, m, m1,max, np)

Express RRF k in A1 character form in the buffer m(max), starting at position m1. The sign
term is output as +, -, +i or -i; the exponents of the first NP primes follow, and further terms
appear as ‘. primeêxp’. NP may be zero. A value of zero, +1 or -1 is output as 0, +1 or -1 in
the sign position. An error message is printed if there is not enough space in the buffer. m1 is
updated to point at the next available position in the buffer.

3.5 Angular momentum functions (module wigner)

subroutine threej(j1,j2,j3, m1,m2,m3, x, k)
subroutine sixj(j1,j2,j3, l1,l2,l3, x, k)
subroutine ninej(a,b,c, d,e,f, g,h,i, x, k)

These routines set the appropriate vector coupling coefficient in the RRF k. x is a Fortran integer
which should have the value 1 or 2; every angular momentum argument (j1 etc.) is interpreted
as j1 or j1/2 according as x = 1 or 2.

subroutine three0(j1,j2,j3, k)

6

A more efficient equivalent of threej(j1,j2,j3, 0,0,0, 1, k).

subroutine regge3(jp1,jp2,jp3, jm1,jm2,jm3, k)

An alternative way to get a 3j coefficient. jp1 = j1 +m1, jm1 = j1−m1, etc., so all arguments
are integers even if the quantum numbers are not. Since the 3-j routine needs j1+m1 etc.
anyway, this is actually a more efficient way to define the coefficient required.

subroutine CG(j1,j2,J, m1,m2,M, x, k)

Set the RRF k to the Clebsch–Gordan coefficient 〈 j1 j2m1m2|JM〉.

3.6 Error handling

There is a variable hard_errors in rrf_module which is initially set true. With this setting
most errors cause the program to stop after printing an error message. If it is set false, errors
are soft, and cause the variable error in rrf_module to be set true after printing the error
message. If another error occurs while error is true, the program will treat it as a hard error
even if the variable hard_errors is false. If error is set false after an error, the program will
continue, but results should be treated with suspicion.

3.7 Notes

• The program should not be used unless exact results are essential, as is it inevitably much
slower than ordinary arithmetic. In particular, addition may be very slow indeed — much
slower than multiplication.

• The embargo on adding numbers if the result cannot be expressed as an RRF will seem
a very severe restriction. In fact, the program has been used for several fairly elaborate
calculations, involving heavy use of 3j, 6j and 9j coefficients, without ever coming up
against the restriction. I would be interested to learn of a serious problem in which it is
an important restriction. It could be removed in principle, but would involve a complete
rewrite of the program.

• Machine-dependent values are set in rrf_module.F90, and should be checked before
compiling the program.

• The angular momentum routines all use factorials. The largest available value is 200!,
which should suffice for most purposes. An error message is printed if this limit is ex-
ceeded, in which case it is necessary to recompile with a larger value for the parameter
MAXFCT in rrf_module.F90.

• The program has been fairly thoroughly tested and has been used successfully on a num-
ber of problems, but some bugs doubtless remain. I should appreciate being told about
them.

7

A Power of Prime input and output
Numbers to be read in power-of-prime form must be written as
sign x(2) x(3) x(5) . . . x(PNP) [prime[^exp] | n![^exp]] . . .

The sign factor must be present (even for positive numbers). It is followed by exponents for the
first NP primes; NP is specified as an argument to the PP_TO_RRF routine, and may be zero. The
remaining elements of this expression are optional, as indicated by the square brackets (which
should not themselves appear). Each element represents a factor in the required number; that is,
the elements are multiplied together to arrive at the result. Numbers output in power-of-prime
form appear in the same format. Examples are given below.

sign is either 0 (denoting a zero value) or +, [+]1, [+]i, -[1], or -i. The sign term of a positive
number may not be omitted.

prime^exp represents a factor comprising the specified prime number prime raised to the power
exp. E.g. 5^2 represents the factor 25. The exponent may be omitted if it is 1.

n!ˆexp is read as n! raised to the exponent given. The exponent may be omitted if it is 1.

Prime and factorial terms may occur in any order and may be interspersed with each other.
Neither may contain embedded blanks, but they are separated by blanks or period, ‘.’. The‘
^’ introducing an exponent may be omitted if the first character of the exponent is + or -.
Exponents have the form [+|-]nnn..[/2].

A.1 Examples

Using NP = 0, the line
+ 2^-1/2 . 3^1/2 . 5+1/2 . 7-1/2 . 4!
would be read as 24

√
15/14. Using NP = 4 the same number could be input as

+ -1/2 1/2 1/2 -1/2 4!
or as
+ 5/2 3/2 1/2 -1/2

References
Stone, A. J. (2013) The Theory of Intermolecular Forces, Oxford University Press, Oxford, 2nd

edn.

Stone, A. J. and Wood, C. P. (1980) ‘Root-rational-fraction package for exact calculation of
vector coupling coefficients,’ Computer Phys. Comm. 21, 213.

8

